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Interfacial compositions of solid and liquid in a phase-field model with finite interface thickness
for isothermal solidification in binary alloys
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We show that a finite interface thickness in an isothermal phase-field model for alloy solidification intro-
duces a chemical potential gradient in the interfacial region and the solute trapping effect, and the relationships
between material properties and parameters in the phase-field equation can be determined at a low interface
velocity limit condition. Also we show that there are upper bounds on the interface thickness and the interface
kinetics coefficient, which vary with thermophysical properties of alloys. The predicted compositions of solid
and liquid at the interface with this model are in good agreement with those obtained by numerical simulation
of one-dimensional isothermal solidification of an Al-2-mole-%-Si alloy at 87084063-651X98)01309-9

PACS numbe(s): 64.70.Dv, 81.30.Fb, 81.10.Aj, 05.70.Ln

[. INTRODUCTION Fadden[21,22. In their model, the concentration gradient
energy term, in addition to the phase-field gradient term, is
Phase-field models are known to be very powerful in deincluded in the free energy functional. The model has been
scribing the complex pattern evolution of the interface be-applied to the cases including the transient effect of solute
tween mother and new phases in a nonequilibrium stateprofile [23] or thermal effec24]. As pointed out in Ref.
Such models are efficient especially in numerical treatmeni25], however, the concentration gradient energy term is not
because all the governing equations are written as unified necessary condition for solute trapping. The finite interface
equations in the whole space of the system without distinthickness can result in the solute trapping effect, because the
guishing the interface from the mother and the new phaseaglaxation time for partitioning of the solute atoms in the
and direct tracking of the interface position is not neededliffuse interface should be finite in that case. In order to
during numerical calculation. Recently several phase-fieldlescribe the solute trapping effect by a phase-field model
models have been developed mainly for the solidification ofwvithout concentration gradient energy term, therefore, we
pure materiald1-9] and they have been extended to theneed the parameters of the phase-field equation determined
solidification of binary alloys with a single solid phas)—  at a finite interface thickness condition, not at a sharp inter-
13] or with two solid phasef14-17. face limit condition. Recently Karma and Rapp&b6] have
In the phase-field models developed for calculating intershown that it is really feasible to determine the parameters in
face morphology and solute redistribution during solidifica-the phase-field equation at the finite interface thickness con-
tion of alloys, parameters in the phase-field equation can bdition for solidification of pure materials.
described by material parameters with certain relationships. In this article we examine the effect of interface velocity
The relationships are normally derived by matching theon the compositions of solid and liquid at the interface in a
asymptotic limit of the phase-field equation in zero interfacephase-field model with a finite interface thickness for iso-
thickness with the traditional sharp interface condition. Inthermal solidification of binary alloys. At first, at finite inter-
this case, with increasing interface velocity both solid andface thickness condition, we will derive relationships be-
liquid composition at the interface, determined by a paralletween material properties such as interface thickness, the
tangent rule, become lower than equilibrium valyéd. interface energy, and the parameters in the phase-field equa-
However, there is much evidence showing that both solidion such as imposed double-well potential height and the
and liquid compositions at interface approach each other igoefficient of phase-field gradient energy. Next, at a low in-
the bulk composition with increasing interface velodity].  terface velocity limit condition, we will derive the chemical
The current theories on this phenomenon called solute trappotentials of the solid and liquid phases at the interface and
ping, are based on the finite relaxation time for equilibriumshow that a finite interface thickness leads to the chemical
partitioning of the atoms at the interfa¢&9,20; with in- potential gradient within the interfacial region and results in
creasing interface velocity, time for the diffusion of atoms tothe solute trapping effect. And we will derive the relation-
relax into the equilibrium compositions becomes limited andship between linear interface kinetics coefficient and phase-
solid and liquid compositions approach each other. A phaseield mobility. Finally using one-dimensional numerical
field model describing solute trapping during solidification of simulation on isothermal solidification of an Al-2-mole-
alloys has been proposed by Wheeler, Boettinger, and Mc%-Si alloy, we will test the solute trapping behavior and
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compare the compositions of solid and liquid at interface dc d [D(¢) df,
with those predicted at a low interface velocity limit condi- B2 Prvinierroll eyl B (7)
tion dx dx\| f.. dx

For a curved interface in non-steady-state, however, it can be
Il. GOVERNING EQUATIONS shown that the rigorous asymptotic analysis gives the same
key results as those in the one-dimensional steady-state case

written in the form

f(C,¢)=h(¢)fS(C)+[l—h(¢)]fL(C)+Wg(¢), (1) Ill. STATIONARY SOLUTIONS
At thermodynamic equilibrium state, the concentration

wherefS andf' are the free energy density of the solid andcy(x) and phase fieldso(x) are determined by

liquid phases, respectively, and functions of solute mole

fractionc. The phase field is defined as a continuous vari- fo(Co(X), Po(x))=f&(consh (8)

able betweenp=1 at solid and$=0 at liquid phase, and

like Warren and Boettingdil2] we choose and
h(¢)=¢*(64*—15¢+10) 2 ez%zw(co,dm), C)
and v_vhgrefﬁ is the chemical potential at a thermodynamic equi-
wg(d)=we2(1— ¢)2, 3) Illzkiquljlgor?:g)tecatg bbeeréc\:\tjrﬂfe:rg;n the phase-field equation.
whereg(¢) is the double-well potential associated with the foo(Co o) dCo+ Fey(Co, Bo)dbo=0. (10)

phase change and is the barrier height. Even though we

take a constantv independent of composition, it does not If free energy density(c, ¢) for an alloy is given, stationary
necessarily imply that the interface energy is independent ofoncentration profiles as a function ¢f,,

the temperature, in the case with finite interface thickness.

As will be shown in Sec. IV, the interface energy is depen- Co(X) =C(eho(X)), (11
dent on detailed shapes of the free energy curves of solid and

liquid phases and therefore varies with temperature and equ¢éan be found by numerical method in general under the
librium interfacial concentration. We do not impose any re-boundary conditions ofcy=cg at ¢o=1 and co=c| at
striction on the functional forms of the the free energy den-¢,=0, wherec{ and cg are equilibrium compositions of
sity of the solid and liquid phases, and any solution model otiquid and solid, respectively, at a given temperature. If we

thermodynamic data for them may be adopted. define a functior~ as
Time dependence of the phase field and concentration .
field, where positive local entropy production is guaranteed, F(c,¢)=1(c,¢)—fcc, (12
be d ibed b4
can be described bt 4] then f 4(Co, o) = AF(Co, bo)/dgs becauseF (o, dg) =0
b= M(62V2¢—f¢) (4) by Eg.(8), and then Eq(9) may be modified into
and 280 _ dF(Col bo), Bo) a3
dx? déo '
D(¢) . . . .
¢=V- ](—Vfc , (5) Integrating this equation after multiplyindé,/dx on both
cc sides results in
wheret is time andM the mobility of the phase field. The deo o)
in Eq. (4) andw in f are the parameters which are related ax ~ < VF(¢o9)—F(0). (14

with interfacial energy and interface thicknegX.¢) is the

chemical diffusivity, which is a function of phase field. |ntegration of this equation yield#,(x) if the relevant ther-
Equatlon(S) guarantees constant diffusivities in bulk solid modynamic data for an a"oy amvd ande are given_ Because

and liquid, and mass balance at the interface in sharp intefs —1 in bulk solid, this equation giveE(1)=F(0), and
face limit, irrespective of the free energy density model. Inye get the equilibrium chemical potential

this study we will consider only instantaneous steady state in

one dimension. When an interface moves to positigtrec- fr(ct)—f5(c)

tion during solidification, the governing equations become fg:W' (15
_ d_</>: M 2d2_¢_f ©) The functionF(¢g) —F(0) can be expressed as the sum
Undx CaE e of two potentials;

and F(o) —F(0)=wWe§(1— o)?+[Z( o) —Z(0)], (16)
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where the functiorZ(¢,) is defined by 10"
Z($o)=h(o) (b)) +[ 1~ (o) 1T o)) oo L
~fEc( o). (17 E
Z10°
When the free energy curves of both solid and liquid phases =
are convex downward against composition, we can see that 2
Z(0)=2(1), Z(¢og)=2(0), and theZ(py)—Z2(0) has a < 10°
positive maximum value near the position 6F(c(¢)) %
=fL(c(¢y)), as long as the(¢,) decreases monotonically Lk
with ¢q. Therefore Eq(16) is composed of two double-well o
potentials. The height of the first potential must be controlled . . .
10 0 e

to be matched with interface energy and interface thickness.
On the other hand, the second potential is a fixed one for an
isothermal system, which is given by definition of free en-
ergy for the interfacial region. The existence of the FIG. 1. variations of the height of the double-well potential
Z(¢o)—Z(0) imposes a restriction on the interface thick- with interface thickness: calculated with a finite interface thickness

10710 107 108
interface thickness (m)

ness, as will be shown in the next section. condition (dotted ling and with sharp interface limit condition
(solid ling) for Al-2-mole-%-Si alloy at 870 K with an interfacial
IV. PARAMETERS IN THE PHASE-FIELD EQUATION energy of 0.093 J/f

The parameterg, w, andM in the phase-field equation 1
are to be matched with the interface energy interface UB\QGJ VZ( o) —Z(0)d . (22
thickness 2, and interface kinetics coefficient, . In this 0
section the parameteesandw are found fromo and 2 with Combining the above two inequalities yields
a finite interface thickness condition, not with sharp interface

limit condition, and the relationship betweéh and ., will 0. \/7_
be found in the next section. D<o Sod INZ($9) ~2(0)1dd, (23
When the concentration gradient energy term is not in- 2 [NZ(ho)—Z(0)d g
cluded as in this study, interface energy at equilibrium state
is given by[21] This limiting condition on the interface thickness may cause
a serious problem in numerical applications. For example,
, [+ debo 2 Eq. (23 gives a condition that <6.51 nm in the Al-2-

o=¢€ f B W) dx. (18)  mole-%-Si alloy system at 870 K when thermophysical data

are used. This seems to be a serious grid size limitation in
numerical approach, especially in a two-dimensional simula-
tion, on the phase-field modeling for alloy solidification. If
1 we select a sufficiently thin interface while keeping a fixed
U:‘/ng F(¢o)—F(0)dey. (19 solid-liquid interfacial energye should be very small ana

0 very large. In this situation, the second potential in BEdp)

can be negligible compared with the first potential well, and
Equation(14) also gives a measure of the interface thicknessthe solution of Eq(14) is given by

over which the phase field changes from 0.1 to 0.9;
1 ™
X)=5|1l—tanf — x
€ (09 dey bo(X) 5 "(6‘/2 )

— _, 2
v2 Jo1 \F(¢y)—F(0) 20
and then Eqs(19) and (20) yield

Two parameters andw in the phase-field equation can be

determined by numerical integration of Eq49) and (20) €

for a fixed interface energy and thickness. These relation- 2\=2.2/2 \/_w (25
ships are dependent on the system temperature because

Z( o) —Z(0) term is a function of temperature. Also notice gng

that theZ(¢q) —2Z(0) term limits both interface thickness

Using Eq.(14), this may be rewritten as

: (24)

and the interfacial energy as follows: ew
o= L (26)
e (09 débo 32
2As — T (21 : : N
v2 Jo1 \JZ(¢o)—Z(0) which are just the same parameter relationships as for pure

materials in the sharp interface limi5]. Figure 1 shows
and variations of the height of the double-well potential ob-
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TABLE I. Thermophysical data for dilute Al-Si alloy. Dsdcs/dx=A—-v,Cg, Wherecgandc, are the compositions
at solid and liquid sides of the interface, respectively. Elimi-
Ds (m?/s) 1x 1072 nating the constantA, we get the well-known mass-
Dy (m?s) 3x10°° conservation condition at interface.
Tw (K) 933.6 Now we assume that the diffusivity in solid phaBg is
Vi (Mm¥mole) 1.06<10°° so small that the diffusion boundary layer outside of the
o (J/n?) 0.093 interfacial layer is negligible. This assumption is reasonable
SV, (I/mole® G (1—c)+Gc+RTc Inc+(1-c)in(1—c)] in most cases of rapid solidification where the phase-field
+A%(1—c) model can be used as a powerful tool in numerical simula-
fYV,, (J/mole? RTc In c+(1—c)in(1—c)]+c(1—c)[A-+B-(1—-2c)  tion of pattern formation. Under this assumption the constant
+CH(1—6c+6c)] A in Eq. (27) becomes ,c5 because the concentration gra-
G, (I/mole? —10792+11.56T dient in the solid is zero. The chemical potential profile
G2, (J/mole? 12.12r therefore is given by
AS (J/mole? —200-7.5941 . i
A" (J/mole? —10695.4-1.823r —£S/a ce _
B (J/mole? —4274.5-3.044 fex)=felcs) v”f—w D(¢) [eC)—cgldx (28
C* (J/mole? 670.7-0.4607
g 0.006387(at 870 K) where f3(cg) is an integration constant which is just the
ce 0.07919(at 870 K) chemical potential of the solid phase. Although interface ve-
Ke 0.0807(at 870 K locity dependent concentration profitéx) may be found, it
me (K) 939.0(at 870 K is not relevant to the analysis at low interface velocity. The
compositionc, and chemical potentia‘lt(c,_) at the liquid
*Data from Ref[27]. side of the interface are not clearly defined because of the

diffuseness of the phase change in the phase-field model. As
tained by numerical integration of Eq4.9) and(20) (dotted & first approximation, we simply assume that the thermody-
line) and by Eqs(25) and(26) (solid line) for an Al-2-mole-  namic partitioning of concentration at the interface occurs
%-Si alloy at 870 K with interfacial energy of 0.093 /and  sufficiently over the width of-\<x<\. This assumption
thermophysical data given in Table I. In this figure it is clearyjll be tested in Sec. VI. The chemical potentfalc, ) then
that w obtained from a finite interface thickness condition s given by
deviates significantly from that from the sharp interface limit
condition when the interface thickness is larger than about 1 L s N fee
nm. This indicates that parameter relationships obtained with fc(CL):fc(CS)_UnJ . D(¢)[c(x)—cs]dx. (29
the sharp interface limit condition may be used for numerical -
simulation only with a very restrictive interface thickness. If 1o chemical potential of the solid is determined by the

we use Eqs(19) and(20) to determinew and e values, on  ypaqe field equation. Integrating frome —\ to x=\ after
the other hand, we may increase the interface thicknes ultiplying d¢/dx on both sides of Eq(6), we get

However, there is still a limit on the interface thickness given
by inequality (23). When w=0, the calculated interface =\ /d¢)?2 N d2¢ de N of dé
thickness limit is 6.51 nm for the Al-2-mole-%-Si alloy. If — Vi J (&) dx= e2f O dx x—J’ EP adx.
we enforce the interface thickness to be over the limit in -A -A -\ 99
numerical simulation, it leads inevitably to an increased in- (30)
terfacial energy. The value obtained from Egq919) and P ;

(200 was very close to that with the sharp interface limit Egcigﬁe(?), the last term on the right-hand side of &g0)
condition in the whole range of interface thickness in Fig. 1.

The difference ine values determined by the two different  ~,_\ ¢
methods was less than 2%. f 96

X=—=\

V. LOW INTERFACE VELOCITY LIMIT fcl_( fx fec
+vu,

In this section we seek chemical potentials and composi- Cs r D(&)
tions at solid and liquid sides of the diffuse interface with a (31)
low interface velocity limit to find a relationship between
interface kinetics coefficient and parameters in the phase=quation(30) therefore can be written as
field equation.

dep=1f"(c ) —fS(ce) — fElcs)(cL —Co)

[c(x")—cgldXx' |dc.

We integrate Eq(7) to yield fL(cL)—fs(cs)—ft(cL)(cL—cs)
2
D(¢) df, |1 fw (dqb)
vnC(X)+ — =A, 2 =vq| 7 —— | dx
n ( ) fCC dx ( 7) kR o\ dXx
whereA is an integration constant. In liquid and solid sides fCL( fx Fec [C(x')—cs]dx>dc . (32
of the interface, Eq(27) gives D dc, /dx=A—v,c, and cs | Jx D(¢)
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where we took\ — o at the first terms in both sides of Eq. ~ fl(c) —TS(co)
(30) and replaced? in Eq. (31) by f- given by Eq.(29). fi(c))=Tcg= ———, (40)
. T . . CL—Cs
Now we consider a situation when the interface velocity
is low. In this case the first-order equationsiincorrespond-  \ynere
ing to Egs.(29) and (32) become
Un

fo(c)=f(cs)— Bu (33 TS(ce)=co)+ foo (%)de- (41)
Cc Cc n M dX

— o0

S This means thatg and ¢, are determined by a common

tangent rule with a correction on the free energy density of
the solid, which may be interpreted as a parallel tangent rule
dﬁamed by Wheeler, Boettinger, and McFadd&€]. As re-
ported by them, the finite phase-field mobility causes logth
andc, to decrease with increasing interface velocity in this

fl(cL)—S(ce) —fe(c)(cL—Co)=avy, (34)

wherea and g are the constants for a given temperature an
are defined as follows:

N fou(Co.dbo) limiting case. Thirdly, with a finite interface thickness and
_J' cct~0-%0 [Co(x)—cgldx (35) infinite phase-field mobility, we can obtain the chemical po-
-» D(¢o) tentials of solid and liquid sides at the interface as follows:
and s fre)—f%ce) | v ([ [* fedlCo,¢b0)
fe(Cs)=—-—¢ ECETE » D(¢o)
5o ] = aa Ll
a=— o YR
M J .\ dx e D
Cg X (¢0) X[CO(X,)_Cg]dX,)dC (42)
X[co(x")—cgldx’ |dcy, 36
o)~ |acq @

where cq(x) and ¢o(x) are stationary concentration and _ f-(c)—f3(cg) Un et N feo(Co,rdho)
phase fields, respectively, which are the solutions of Egs. fe(er)= CL—Cs B CL—Cs «  D(¢p)
(10) and(14). The @ and 8 may be modified into more trac-

e
Cs

table forms by using Eqg10), (14), and(18) as follows: x[co(x’)—cg]dx’)dc. 43
€ (09 fec(Coy o) ~ R
B= V3 Joa D( o) VF (o) — F(0) [Co(o) = Cslddo In an alloy system with the free energy curves of solid and
(37) liquid phases convex downward against composition and
with negative liquidus and solidus slopes in the phase dia-
and gram,f.. is always positive and, is larger tharcs. In this
case, as long as the stationary compositigfx) in the in-
o € 0.9( o foc(Co, db0) terfacial region is betweeng andc, we can get the in-
=M +— f j ; - equalities
€ v2 Joa\ Joa D(¢g)VF(dg)—F(0)
~ f-(c)—f(cs)
Siea)= " S
X[Eo(¢6)—C§,]d¢(’,> feo(Cordo) 4, (ag) fe(cs) cL—Cs (44)
fcc(C01¢0)
and

Two coupled equation$33) and (34) determine chemical
potentials and compositions at solid and liquid sides of the
diffuse interface as functions of interface velocity.

In Egs.(33) and(34), some interesting limiting cases are
included. first, with sharp interface limit condition and infi- Note that these inequalities can hold only whegecg and
nite phase-field mobilityM, we can obtain the following c_ =<cf, indicating that the compositions on the solid and
relationship because —0, a—0, and 8—0 in this limit  liquid sides of the interface approach each other with in-

fL(CL)_fS(Cs)

fi(c,)<
c( L) CL_CS

(45)

condition; creasing interface velocity. From Eq&l2) and (43), for a
given alloy at a constant temperature, we see that the chemi-

L s fh(c ) —fS(cg) cal potentialgand also the compositionsf solid and liquid

fo(c)=fclcg)= T (39 at interface are governed by the interfaciakclee number

which is defined by Pe 2\v,/D whereD is the average
which can be interpreted as the common tangent rule for thdiffusivity at the interface. This behavior of the interfacial
local equilibrium condition at the interface. Secondly, with composition, known as the solute trapping phenomédas8h
the sharp interface limit condition and a finite phase-fieldis the natural result. With increasing interface velocity, time
mobility, the following relationship can be obtained: for the diffusion of atoms to relax into the equilibrium com-
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positions decreases and the difference between solid and litpehavior. We relied on the latter method. The initial condi-
uid compositions at the interface should decrease. The reldion of our system is an undercooled state with a given sys-
tive scale of the interface velocity, to the relaxation speed tem temperature, and then a solid phase with the same com-
of the atom at the interface can be estimated as the interfacigbsition as the bulk liquid nucleates and starts to grow freely.
Peclet number. The interfacial Blet number thus plays a As time goes on, due to solute pile-up in the liquid phase, the
key role in solute trapping. When both the interface thick-interface velocity decreases monotonically and finally stops
ness and phase-field mobility are finitg, decreases with at an equilibrium state. Thus there is no steady state in this
increasing interface velocity because they both caysto  one-dimensional{1D) free-growth system. In order to get a
decrease. However, with increasing interface velociygan  steady state, therefore, we should impose some conditions on
decrease or increase depending on the relative magnitude ofir system. If total solute mass is to be conserved, the con-
two terms on the right-hand side of E@®6). dition should be that the far-field concentration in solid
Considering that the left-hand side term in E84) is the  (c; ™) is the same as that in liquict{ *). In this case we can

thermodynamic driving force for the formation of the solid get a unique steady-state interface velocity for a given tem-
with compositioncg from the liquid with compositionc, perature and a bulk composition. If mass is not to be con-
[28], it is clear that the interface velocity is linear with the served, however, it is possible to impose a different condi-
driving force. For a dilute solution, following Boettinger and tion to get steady state; suppose an imaginary solute sink in

Coriell [29], Eq. (34) can be modified into liquid, moving with the same instantaneous velocity as the
interface, maintaining a prescribed distance from the moving
(k®=k)+k In(k/k®)\  Vy am® interface. If the solute sink engulfs all solute influx from its

T=Ty—m,| 1+ (1—k®) TRT1—keYM neighbor, the steady state can exist at long time behavior

(46)  even wherc; “ is different fromc ” because the system has
an additional degree of freedoftine distance between solute
whereT is the temperature of the isothermal system, Agd  sink and interface In this case the interface velocity is not
is the equilibrium melting temperature of pure solvent,is  uniquely dependent on the system temperature and bulk
the equilibrium liquidus slope in phase diagraviy, is molar ~ composition, but should depend on the imposed distance be-
volume, R is the gas constank= cs/c_, andk®=cg/c}. tween sink and interface. With this technique we will check
The second and third terms on the right-hand side of(&g).  the effect of interface velocity on the interfacial composi-
are the constitutional undercooling with a nonequilibriumtions of solid and liquid at a given temperature. Note that our
correction and kinetics undercooling, respectively. Accord-parameters depending only on the system temperature in the
ing to the conventional definition of the interface kinetics phase-field equation do not depend on the bulk composition.

coefficientu, [18], we then obtain The Al-2-mole-%-Si alloy was selected as a model sys-
tem and all calculations were performed at 870 K with ther-
RT1-k® mophysical data given in Table I. The interface thickness 2
r“k:\/_m “amé (47 was taken as 3 nm, and the grid size of 0.5 nm was used so

that the interfacial region ranges over six grid spacing. The
wherea is given by Eq.(38). Thus all the parametess w, toFaI grid number was fixed_ to be 1500. With the interface
andM in the isothermal phase-field model with a finite in- thickness of 3 nm and the interface enexgy-0.093 J/rf,
terface thickness can be determined by using Ei@, (20, ~ the parametersv and e obtained from Egs(19) and (20)
(38), and (47) if interface energy, interface thickness, inter- Were 2.10< 16° J/n? and 1.9 10° (J/m)"% respectively.
face kinetics coefficient, and free energy densities of solidlhe phase-field mobilityV was treated as a variable to ob-
and liquid as functions of composition are given. Even wherserve its effect on the compositions of solid and liquid at
phase-field mobility is infinite, the interface kinetics coeffi- interface. By using Eqs(38) and (47), of course, one may
cient must be a finite value due to the second term on thgvaluate the corresponding interface kinetics coefficiept
right-hand side of E(38), as long as the interface thickness under assumption of dilute solution of mixture.
is nonzero, that iss# 0. The finite interface thickness there- ~ Equations(4) and (5) were discretized by a second-order
fore imposes a limit ope, . For the Al—2-mole-%-Si alloy at differencing scheme for spatial derivatives and a simple ex-
870 K, for example, by using Eq$38) and (47) it can be plicit Euler scheme for time derivative, conserving the total
shown that the interface thickness of 3 nm yields the maxiinass. The../D(¢) at the boundary between thh and the

mum w, of 0.0195 m/s K wherM is infinite. (i+1)th grid was determined by
VI. NUMERICAL SIMULATION ( D(¢) )‘*1’2 D(¢'*?) 48
—_— = y 4
In this section the steady-state concentrations of solid and fec(C. ) ]

liquid at the interface obtained by numerical analysis for
one-dimensional isothermal solidification were comparedynere the concentratiosi* Y2 and phase fields' * 2 at grid

with those predicted by Eq$33) and (34) under the low o nqary were obtained by Lagrange interpolation on four

interface velocity limit condition. neighboring grid points. The dependence of diffusivity ¢n
The steady state can be obtained by solving directIXNaS assurr?e?i asp ' P yé

steady-state equations for a given temperature, or solving
non-steady-state equations with the proper boundary condi-
tions under which the steady state is guaranteed at long time D(¢)=h(¢)Dg+[1—-h(¢)]D_, (49
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FIG. 2. Steady-state concentration profiles calculated with FIG. 3. The detailed phase-field and concentration profiles
M =44 n/J s for Al-2-mole-%-Si alloy at 870 K. The origin was around the interface, corresponding to Fig. 2.
taken as the position witth=0.5. The interface velocities are 0.060

m/s for solid Iine, 0.20 m/s for dashed ”ne, and 0.50 m/s for dotteqalned by an |terat|ve method on the ComposnlonS, us|ng the
line. free energy densities of solid and liquid phases given in
Table 1, where we useda=(2.552M +0.3280)

whereDg andD_ are the diffusivities in bulk solid and lig- 10° J s/nf and 8=1.858< 10° Js/nf which were obtained
uid, respectively. Initial liquid composition was uniform with from Egs.(37) and (3é) for the samaw, ¢, andD () as in

2.0 silicon mole % and the system temperature in all simuy,o \\ merical simulation. In order to check the effects of

latio dns wa;s fixed"to |b§ 8;? ﬂlf' Solidification stt_arted_tﬁf'iﬁr hase-field mobility, two cases were considefdds 44 and
seeding ot a smafl Solid Wi € same composition wi =2.2 nt/J s were assumed and corresponding interface ki-

liquid at one end of the system. In order to guarantee exisﬁetics coefficients were 0.0165 m/K s and 0.0043 m/K s, re-

tence Of. ste_ady state atllong time behawc_)r, we put a mOV'n%pectively, which were calculated from E@7) under the
solute sink in liquid, maintaining a prescribed distance from ssumption of dilute solution

the interface. In every time step, the solute sink was moveg Figures 4 and 5 show interface velocity dependencies of

by .jUS'F the i_nt_e_rface migration_ _distance and enforced tqiquid and solid compositions at the interface, respectively.
maintain the initial bulk composition. The system reached qs these figures, solid circlesM=44 n#/Js) and open

steady state after a transient period. The interface velocity Aircles (M=2.2 m#/J s) are the results obtained by numerical
the steady state could be varied by changing the prescribeS mulation, e{nd solid curvesM=44 n?lJs) and dashed

d|sta_1nce between solute sink and mterface._ , .curves M =2.2 nt/J s) are those predicted at low interface
Figure 2 shows steady-state concentration profiles with

M =44 nf/J s and three different fixed distances, where theveIOC|ty limit condition. As discussed in the preceding sec-

origin was taken as the position @f=0.5. The position of

the solute sink can be seen in each profile, where the com-

position in liquid abruptly goes to the initial bulk composi- 0.08
tion. The measured interface velocities were 0.060(sutd

line), 0.20 m/s(dashed ling and 0.50 m/gdotted ling for

three different prescribed distances between solute sink and 0.06
interface. Note that the maximum and the minimum concen-
trations approach each other with increasing interface veloc-
ity. The detailed corresponding phase field and concentration
profiles around the interface are shown in Fig. 3. In this

figure, interface thickness over which phase field changes
from 0.1 to 0.9 is just six grid spacing for all three cases as
we expected. Note that the concentrationgat0.1, which

we regarded as the composition of liquid at the interface in L
the preceding section, are very close to the maximum values 0'08_001 0.01 0.1
in all cases.

We compared the solid and liquid compositions at the
interface obtained in the numerical simulation with those g, 4. variations of the liquid concentration at the interface
predicted with low interface velocity limit condition. The \jth the interface velocity. The solidM =44 n#J's) and dashed
SO|id and |IqUId CompOSitionS at the interface in numericalcurves M=22 n'F/J S) are the predictions with low interface ve-
simulation were taken as the minimum and maximum valuesSpocity limit condition, and the filled circlesNi =44 nf/Js) and
respectively, in the concentration profiles given in Fig. 3.open circles 1=2.2 nt/J s) are the results obtained from numeri-
The solutions of Eqs(33) and (34), cg andc,, were ob- cal simulations with the same parameters.

0.04

concentration

0.02 -

interface velocity (m/sec)
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VIl. CONCLUSION
0.012
For the phase-field model for solidification of an alloy, we
0.010 represented the relationship between the material properties
and the parameters in the phase-field equation with the low
S 0.008 in'gerface velocifcy limit conditi.on and wi.th.a fir)ipe ir}terface
= thickness, not in the sharp interface limit. Finite interface
£ 0.006 thlcknes_s induced a chemical potential g_radlent W|th_|n the
Q- diffuse interface and caused the compositions of solid and
5 . liquid at the interface to approach each other with increasing
© 0.004 - o interface velocity, which is the solute trapping phenomenon.
1% One-dimensional isothermal solidification of the Al-2-mole-
0.002 - i %-Si alloy at 870 K was simulated by a numerical method.
T The interfacial compositions of solid and liquid predicted at
0.001 0.01 0.1 a low interface velocity limit condition were in good agree-
interface velocity (m/sec) ment with those from the numerical simulations, especially

in the region of interface velocity less than 0.2 m/s.

FIG. 5. Variations of the solid concentration at the interface  There exist upper bounds on the interface thickness and
with the interface velocity. The solidM =44 n?/J s) and dashed the interface kinetics coefficient which vary with thermo-
curves M=2.2 m’/J s) are the predictions with low interface ve- physical properties of alloys. The upper bound for the inter-
locity limit condition, and the filled circlesNi=44 n?/Js) and face kinetics coefficient disappears only at sharp interface
open circles 1 =2.2 n/J s) are the results from numerical simu- |imit condition or infinite interfacial diffusivity condition.
lations with the same parameters. The calculated upper bound of interface thickness for the

Al-2-mole-%-alloy at 870 K was 6.51 nm. The upper bound
tion, with a smallM value both solid and liquid composi- on the interface kinetics coefficient, calculated with an inter-
tions decrease with the increasing interface velocity. Wherace thickness of 3 nm, was 0.0195 m/s K. These upper
M is large, however, the solid composition increases and thbounds may impose strong restrictions on the numerical
solid and liquid concentrations approach each other. We casimulation of pattern formation during solidification with a
see the compositions predicted with low interface velocityreasonable interface kinetics coefficient I m/s K) and a
limit condition are in good agreements with those from thelarge system size. After submission of this paper, we learned
numerical simulations, especially in the region of interfacethat similar results were obtained independently by Ahmad
velocity less than 0.2 m/s. [30].
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