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Interfacial compositions of solid and liquid in a phase-field model with finite interface thickness
for isothermal solidification in binary alloys
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We show that a finite interface thickness in an isothermal phase-field model for alloy solidification intro-
duces a chemical potential gradient in the interfacial region and the solute trapping effect, and the relationships
between material properties and parameters in the phase-field equation can be determined at a low interface
velocity limit condition. Also we show that there are upper bounds on the interface thickness and the interface
kinetics coefficient, which vary with thermophysical properties of alloys. The predicted compositions of solid
and liquid at the interface with this model are in good agreement with those obtained by numerical simulation
of one-dimensional isothermal solidification of an Al–2-mole-%-Si alloy at 870 K.@S1063-651X~98!01309-9#

PACS number~s!: 64.70.Dv, 81.30.Fb, 81.10.Aj, 05.70.Ln
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I. INTRODUCTION

Phase-field models are known to be very powerful in
scribing the complex pattern evolution of the interface b
tween mother and new phases in a nonequilibrium st
Such models are efficient especially in numerical treatm
because all the governing equations are written as un
equations in the whole space of the system without dis
guishing the interface from the mother and the new pha
and direct tracking of the interface position is not need
during numerical calculation. Recently several phase-fi
models have been developed mainly for the solidification
pure materials@1–9# and they have been extended to t
solidification of binary alloys with a single solid phase@10–
13# or with two solid phases@14–17#.

In the phase-field models developed for calculating int
face morphology and solute redistribution during solidific
tion of alloys, parameters in the phase-field equation can
described by material parameters with certain relationsh
The relationships are normally derived by matching
asymptotic limit of the phase-field equation in zero interfa
thickness with the traditional sharp interface condition.
this case, with increasing interface velocity both solid a
liquid composition at the interface, determined by a para
tangent rule, become lower than equilibrium values@14#.
However, there is much evidence showing that both so
and liquid compositions at interface approach each othe
the bulk composition with increasing interface velocity@18#.
The current theories on this phenomenon called solute t
ping, are based on the finite relaxation time for equilibriu
partitioning of the atoms at the interface@19,20#; with in-
creasing interface velocity, time for the diffusion of atoms
relax into the equilibrium compositions becomes limited a
solid and liquid compositions approach each other. A pha
field model describing solute trapping during solidification
alloys has been proposed by Wheeler, Boettinger, and
PRE 581063-651X/98/58~3!/3316~8!/$15.00
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Fadden@21,22#. In their model, the concentration gradie
energy term, in addition to the phase-field gradient term
included in the free energy functional. The model has be
applied to the cases including the transient effect of so
profile @23# or thermal effect@24#. As pointed out in Ref.
@25#, however, the concentration gradient energy term is
a necessary condition for solute trapping. The finite interfa
thickness can result in the solute trapping effect, because
relaxation time for partitioning of the solute atoms in th
diffuse interface should be finite in that case. In order
describe the solute trapping effect by a phase-field mo
without concentration gradient energy term, therefore,
need the parameters of the phase-field equation determ
at a finite interface thickness condition, not at a sharp in
face limit condition. Recently Karma and Rappel@26# have
shown that it is really feasible to determine the parameter
the phase-field equation at the finite interface thickness c
dition for solidification of pure materials.

In this article we examine the effect of interface veloc
on the compositions of solid and liquid at the interface in
phase-field model with a finite interface thickness for is
thermal solidification of binary alloys. At first, at finite inter
face thickness condition, we will derive relationships b
tween material properties such as interface thickness,
interface energy, and the parameters in the phase-field e
tion such as imposed double-well potential height and
coefficient of phase-field gradient energy. Next, at a low
terface velocity limit condition, we will derive the chemica
potentials of the solid and liquid phases at the interface
show that a finite interface thickness leads to the chem
potential gradient within the interfacial region and results
the solute trapping effect. And we will derive the relatio
ship between linear interface kinetics coefficient and pha
field mobility. Finally using one-dimensional numeric
simulation on isothermal solidification of an Al–2-mole
%-Si alloy, we will test the solute trapping behavior an
3316 © 1998 The American Physical Society
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PRE 58 3317INTERFACIAL COMPOSITIONS OF SOLID AND . . .
compare the compositions of solid and liquid at interfa
with those predicted at a low interface velocity limit cond
tion.

II. GOVERNING EQUATIONS

The free energy density of a solid-liquid mixture may
written in the form

f ~c,f!5h~f! f S~c!1@12h~f!# f L~c!1wg~f!, ~1!

where f S and f L are the free energy density of the solid a
liquid phases, respectively, and functions of solute m
fractionc. The phase fieldf is defined as a continuous var
able betweenf51 at solid andf50 at liquid phase, and
like Warren and Boettinger@12# we choose

h~f!5f3~6f2215f110! ~2!

and

wg~f!5wf2~12f!2, ~3!

whereg(f) is the double-well potential associated with t
phase change andw is the barrier height. Even though w
take a constantw independent of composition, it does n
necessarily imply that the interface energy is independen
the temperature, in the case with finite interface thickne
As will be shown in Sec. IV, the interface energy is depe
dent on detailed shapes of the free energy curves of solid
liquid phases and therefore varies with temperature and e
librium interfacial concentration. We do not impose any
striction on the functional forms of the the free energy de
sity of the solid and liquid phases, and any solution mode
thermodynamic data for them may be adopted.

Time dependence of the phase field and concentra
field, where positive local entropy production is guarante
can be described by@14#

f t5M ~e2¹2f2 f f! ~4!

and

ct5“•S D~f!

f cc
“ f cD , ~5!

wheret is time andM the mobility of the phase field. Thee
in Eq. ~4! and w in f are the parameters which are relat
with interfacial energy and interface thickness.D(f) is the
chemical diffusivity, which is a function of phase field
Equation~5! guarantees constant diffusivities in bulk sol
and liquid, and mass balance at the interface in sharp in
face limit, irrespective of the free energy density model.
this study we will consider only instantaneous steady stat
one dimension. When an interface moves to positivex direc-
tion during solidification, the governing equations becom

2vn

df

dx
5M S e2

d2f

dx2 2 f fD ~6!

and
e

e

of
s.
-
nd
ui-
-
-
r

n
,

r-
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2vn

dc

dx
5

d

dx S D~f!

f cc

d fc

dx D . ~7!

For a curved interface in non-steady-state, however, it can
shown that the rigorous asymptotic analysis gives the sa
key results as those in the one-dimensional steady-state
except for the presence of the curvature effect.

III. STATIONARY SOLUTIONS

At thermodynamic equilibrium state, the concentrati
c0(x) and phase fieldf0(x) are determined by

f c„c0~x!,f0~x!…5 f c
e~const! ~8!

and

e2
d2f0

dx2 5 f f~c0 ,f0!, ~9!

where f c
e is the chemical potential at a thermodynamic eq

librium state to be found from the phase-field equatio
Equation~8! can be rewritten as

f cc~c0 ,f0!dc01 f cf~c0 ,f0!df050. ~10!

If free energy densityf (c,f) for an alloy is given, stationary
concentration profiles as a function off0 ,

c0~x!5 c̃„f0~x!…, ~11!

can be found by numerical method in general under
boundary conditions ofc05cS

e at f051 and c05cL
e at

f050, wherecL
e and cS

e are equilibrium compositions o
liquid and solid, respectively, at a given temperature. If
define a functionF as

F~c,f!5 f ~c,f!2 f c
ec, ~12!

then f f(c0 ,f0)5 dF(c0 ,f0)/df becauseFc(c0 ,f0)50
by Eq. ~8!, and then Eq.~9! may be modified into

e2
d2f0

dx2 5
dF„c̃0~f0!,f0…

df0
. ~13!

Integrating this equation after multiplyingdf0 /dx on both
sides results in

df0

dx
52

&

e
AF~f0!2F~0!. ~14!

Integration of this equation yieldsf0(x) if the relevant ther-
modynamic data for an alloy andw ande are given. Because
f051 in bulk solid, this equation givesF(1)5F(0), and
we get the equilibrium chemical potential

f c
e5

f L~cL
e!2 f S~cS

e!

cL
e2cS

e . ~15!

The functionF(f0)2F(0) can be expressed as the su
of two potentials;

F~f0!2F~0!5wf0
2~12f0!21@Z~f0!2Z~0!#, ~16!
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where the functionZ(f0) is defined by

Z~f0![h~f0! f S
„c̃~f0!…1@12h~f0!# f L

„c̃~f0!…

2 f c
ec̃~f0!. ~17!

When the free energy curves of both solid and liquid pha
are convex downward against composition, we can see
Z(0)5Z(1), Z(f0)>Z(0), and theZ(f0)2Z(0) has a
positive maximum value near the position off S

„c̃(f0)…
5 f L

„c̃(f0)…, as long as thec̃(f0) decreases monotonicall
with f0 . Therefore Eq.~16! is composed of two double-we
potentials. The height of the first potential must be control
to be matched with interface energy and interface thickn
On the other hand, the second potential is a fixed one fo
isothermal system, which is given by definition of free e
ergy for the interfacial region. The existence of t
Z(f0)2Z(0) imposes a restriction on the interface thic
ness, as will be shown in the next section.

IV. PARAMETERS IN THE PHASE-FIELD EQUATION

The parameterse, w, and M in the phase-field equatio
are to be matched with the interface energys, interface
thickness 2l, and interface kinetics coefficientmk . In this
section the parameterse andw are found froms and 2l with
a finite interface thickness condition, not with sharp interfa
limit condition, and the relationship betweenM andmk will
be found in the next section.

When the concentration gradient energy term is not
cluded as in this study, interface energy at equilibrium st
is given by@21#

s5e2E
2`

1`S df0

dx D 2

dx. ~18!

Using Eq.~14!, this may be rewritten as

s5&eE
0

1
AF~f0!2F~0!df0 . ~19!

Equation~14! also gives a measure of the interface thickne
over which the phase field changes from 0.1 to 0.9;

2l5
e

&
E

0.1

0.9 df0

AF~f0!2F~0!
. ~20!

Two parameterse andw in the phase-field equation can b
determined by numerical integration of Eqs.~19! and ~20!
for a fixed interface energy and thickness. These relat
ships are dependent on the system temperature bec
Z(f0)2Z(0) term is a function of temperature. Also notic
that theZ(f0)2Z(0) term limits both interface thicknes
and the interfacial energy as follows:

2l<
e

&
E

0.1

0.9 df0

AZ~f0!2Z~0!
~21!

and
s
at
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n

-

e

-
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n-
use

s>&eE
0

1
AZ~f0!2Z~0!df. ~22!

Combining the above two inequalities yields

2l<
s

2

*0.1
0.9@1/AZ~f0!2Z~0!# df0

*0
1AZ~f0!2Z~0!df0

. ~23!

This limiting condition on the interface thickness may cau
a serious problem in numerical applications. For examp
Eq. ~23! gives a condition that 2l<6.51 nm in the Al–2-
mole-%-Si alloy system at 870 K when thermophysical d
are used. This seems to be a serious grid size limitation
numerical approach, especially in a two-dimensional simu
tion, on the phase-field modeling for alloy solidification.
we select a sufficiently thin interface while keeping a fix
solid-liquid interfacial energy,e should be very small andw
very large. In this situation, the second potential in Eq.~16!
can be negligible compared with the first potential well, a
the solution of Eq.~14! is given by

f0~x!5
1

2 F12tanhS Aw

e&
xD G , ~24!

and then Eqs.~19! and ~20! yield

2l.2.2&
e

Aw
~25!

and

s5
eAw

3&
, ~26!

which are just the same parameter relationships as for p
materials in the sharp interface limit@5#. Figure 1 shows
variations of the height of the double-well potentialw ob-

FIG. 1. Variations of the height of the double-well potentialw
with interface thickness: calculated with a finite interface thickn
condition ~dotted line! and with sharp interface limit condition
~solid line! for Al–2-mole-%-Si alloy at 870 K with an interfacia
energy of 0.093 J/m2.
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tained by numerical integration of Eqs.~19! and~20! ~dotted
line! and by Eqs.~25! and~26! ~solid line! for an Al–2-mole-
%-Si alloy at 870 K with interfacial energy of 0.093 J/m2 and
thermophysical data given in Table I. In this figure it is cle
that w obtained from a finite interface thickness conditi
deviates significantly from that from the sharp interface lim
condition when the interface thickness is larger than abo
nm. This indicates that parameter relationships obtained w
the sharp interface limit condition may be used for numeri
simulation only with a very restrictive interface thickness.
we use Eqs.~19! and ~20! to determinew and e values, on
the other hand, we may increase the interface thickn
However, there is still a limit on the interface thickness giv
by inequality ~23!. When w50, the calculated interface
thickness limit is 6.51 nm for the Al–2-mole-%-Si alloy.
we enforce the interface thickness to be over the limit
numerical simulation, it leads inevitably to an increased
terfacial energy. Thee value obtained from Eqs.~19! and
~20! was very close to that with the sharp interface lim
condition in the whole range of interface thickness in Fig.
The difference ine values determined by the two differen
methods was less than 2%.

V. LOW INTERFACE VELOCITY LIMIT

In this section we seek chemical potentials and comp
tions at solid and liquid sides of the diffuse interface with
low interface velocity limit to find a relationship betwee
interface kinetics coefficient and parameters in the pha
field equation.

We integrate Eq.~7! to yield

vnc~x!1
D~f!

f cc

d fc

dx
5A, ~27!

whereA is an integration constant. In liquid and solid sid
of the interface, Eq.~27! gives DLdcL /dx5A2vncL and

TABLE I. Thermophysical data for dilute Al-Si alloy.

DS (m2/s) 1310212

DL (m2/s) 331029

TM ~K! 933.6
Vm (m3/mole) 1.0631025

s (J/m2) 0.093
f SVm ~J/mole!a GAl

0 (12c)1GSi
0 c1RT@c ln c1(12c)ln(12c)#

1ASc(12c)
f LVm ~J/mole!a RT@c ln c1(12c)ln(12c)#1c(12c)@AL1BL(122c)

1CL(126c16c2)#
GAl

0 ~J/mole!a 210792111.56T
GSi

0 ~J/mole!a 12.12T
AS ~J/mole!a 220027.594T
AL ~J/mole!a 210695.421.823T
BL ~J/mole!a 24274.523.044T
CL ~J/mole!a 670.720.460T
cS

e 0.006387~at 870 K!

cL
e 0.07919~at 870 K!

ke 0.0807~at 870 K!

me ~K! 939.0~at 870 K!

aData from Ref.@27#.
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DSdcS /dx5A2vncS , wherecS andcL are the compositions
at solid and liquid sides of the interface, respectively. Elim
nating the constantA, we get the well-known mass
conservation condition at interface.

Now we assume that the diffusivity in solid phaseDS is
so small that the diffusion boundary layer outside of t
interfacial layer is negligible. This assumption is reasona
in most cases of rapid solidification where the phase-fi
model can be used as a powerful tool in numerical simu
tion of pattern formation. Under this assumption the const
A in Eq. ~27! becomesvncS because the concentration gr
dient in the solid is zero. The chemical potential profi
therefore is given by

f c~x!5 f c
S~cS!2vnE

2`

x f cc

D~f!
@c~x!2cS#dx, ~28!

where f c
S(cS) is an integration constant which is just th

chemical potential of the solid phase. Although interface
locity dependent concentration profilec(x) may be found, it
is not relevant to the analysis at low interface velocity. T
compositioncL and chemical potentialf c

L(cL) at the liquid
side of the interface are not clearly defined because of
diffuseness of the phase change in the phase-field mode
a first approximation, we simply assume that the thermo
namic partitioning of concentration at the interface occ
sufficiently over the width of2l,x,l. This assumption
will be tested in Sec. VI. The chemical potentialf c

L(cL) then
is given by

f c
L~cL!. f c

S~cS!2vnE
2l

l f cc

D~f!
@c~x!2cS#dx. ~29!

The chemical potential of the solid is determined by t
phase-field equation. Integrating fromx52l to x5l after
multiplying df/dx on both sides of Eq.~6!, we get

2
vn

M E
2l

l S df

dx D 2

dx5e2E
2l

l d2f

dx2

df

dx
dx2E

2l

l ] f

]f

df

dx
dx.

~30!

By Eq. ~28!, the last term on the right-hand side of Eq.~30!
becomes

E
x52l

x5l ] f

]f
df5 f L~cL!2 f S~cS!2 f c

S~cS!~cL2cS!

1vnE
cS

cLS E
2l

x f cc

D~f!
@c~x8!2cS#dx8D dc.

~31!

Equation~30! therefore can be written as

f L~cL!2 f S~cS!2 f c
L~cL!~cL2cS!

5vnF 1

M E
2`

` S df

dx D 2

dx

1E
cS

cLS E
x

l f cc

D~f!
@c~x8!2cS#dxD dcG , ~32!
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where we tookl→` at the first terms in both sides of Eq
~30! and replacedf c

S in Eq. ~31! by f c
L given by Eq.~29!.

Now we consider a situation when the interface veloc
is low. In this case the first-order equations invn correspond-
ing to Eqs.~29! and ~32! become

f c
L~cL!5 f c

S~cS!2bvn ~33!

and

f L~cL!2 f S~cS!2 f c
L~cL!~cL2cS!5avn , ~34!

wherea andb are the constants for a given temperature a
are defined as follows:

b5E
2l

l f cc~c0 ,f0!

D~f0!
@c0~x!2cS

e#dx ~35!

and

a5
1

M E
2`

` S df0

dx D 2

dx1E
cS

e

cL
eS E

x

l f cc~c0 ,f0!

D~f0!

3@c0~x8!2cS
e#dx8D dc0 , ~36!

where c0(x) and f0(x) are stationary concentration an
phase fields, respectively, which are the solutions of E
~10! and~14!. Thea andb may be modified into more trac
table forms by using Eqs.~10!, ~14!, and~18! as follows:

b5
e

&
E

0.1

0.9 f cc~ c̃0 ,f0!

D~f0!AF~f0!2F~0!
@ c̃0~f0!2cS

e#df0

~37!

and

a5
s

Me2 1
e

&
E

0.1

0.9S E
0.1

f0 f cc~ c̃0 ,f08!

D~f08!AF~f08!2F~0!

3@ c̃0~f08!2cS
e#df08D f cf~ c̃0 ,f0!

f cc~ c̃0 ,f0!
df0 . ~38!

Two coupled equations~33! and ~34! determine chemica
potentials and compositions at solid and liquid sides of
diffuse interface as functions of interface velocity.

In Eqs.~33! and ~34!, some interesting limiting cases a
included. first, with sharp interface limit condition and in
nite phase-field mobilityM , we can obtain the following
relationship becausel→0, a→0, and b→0 in this limit
condition:

f c
L~cL!5 f c

S~cS!5
f L~cL!2 f S~cS!

cL2cS
, ~39!

which can be interpreted as the common tangent rule for
local equilibrium condition at the interface. Secondly, w
the sharp interface limit condition and a finite phase-fi
mobility, the following relationship can be obtained:
d

s.

e

e

f c
L~cL!5 f̃ c

S~cS!5
f L~cL!2 f̃ S~cS!

cL2cS
, ~40!

where

f̃ S~cS!5 f S~cS!1
vn

M E
2`

` S df0

dx D 2

dx. ~41!

This means thatcS and cL are determined by a commo
tangent rule with a correction on the free energy density
the solid, which may be interpreted as a parallel tangent
named by Wheeler, Boettinger, and McFadden@10#. As re-
ported by them, the finite phase-field mobility causes bothcS
andcL to decrease with increasing interface velocity in th
limiting case. Thirdly, with a finite interface thickness an
infinite phase-field mobility, we can obtain the chemical p
tentials of solid and liquid sides at the interface as follow

f c
S~cS!5

f L~cL!2 f S~cS!

cL2cS
1

vn

cL2cS
E

cS
e

cL
eS E

2l

x f cc~c0 ,f0!

D~f0!

3@c0~x8!2cS
e#dx8D dc ~42!

and

f c
L~cL!5

f L~cL!2 f S~cS!

cL2cS
2

vn

cL2cS
E

cS
e

cL
eS E

x

l f cc~c0 ,f0!

D~f0!

3@c0~x8!2cS
e#dx8D dc. ~43!

In an alloy system with the free energy curves of solid a
liquid phases convex downward against composition a
with negative liquidus and solidus slopes in the phase d
gram, f cc is always positive andcL is larger thancS . In this
case, as long as the stationary compositionc0(x) in the in-
terfacial region is betweencS

e and cL
e , we can get the in-

equalities

f c
S~cS!>

f L~cL!2 f S~cS!

cL2cS
~44!

and

f c
L~cL!<

f L~cL!2 f S~cS!

cL2cS
. ~45!

Note that these inequalities can hold only whencS>cS
e and

cL<cL
e , indicating that the compositions on the solid a

liquid sides of the interface approach each other with
creasing interface velocity. From Eqs.~42! and ~43!, for a
given alloy at a constant temperature, we see that the ch
cal potentials~and also the compositions! of solid and liquid
at interface are governed by the interfacial Pe´clet number
which is defined by Pe5 2lvn /D̃ where D̃ is the average
diffusivity at the interface. This behavior of the interfaci
composition, known as the solute trapping phenomenon@18#,
is the natural result. With increasing interface velocity, tim
for the diffusion of atoms to relax into the equilibrium com
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positions decreases and the difference between solid and
uid compositions at the interface should decrease. The r
tive scale of the interface velocityvn to the relaxation speed
of the atom at the interface can be estimated as the interfa
Péclet number. The interfacial Pe´clet number thus plays a
key role in solute trapping. When both the interface thic
ness and phase-field mobility are finite,cL decreases with
increasing interface velocity because they both causecL to
decrease. However, with increasing interface velocity,cS can
decrease or increase depending on the relative magnitud
two terms on the right-hand side of Eq.~36!.

Considering that the left-hand side term in Eq.~34! is the
thermodynamic driving force for the formation of the sol
with compositioncS from the liquid with compositioncL
@28#, it is clear that the interface velocity is linear with th
driving force. For a dilute solution, following Boettinger an
Coriell @29#, Eq. ~34! can be modified into

T5TM2mecLS 11
~ke2k!1k ln~k/ke!

~12ke! D2
Vm

RT

ame

12ke vn ,

~46!

whereT is the temperature of the isothermal system, andTM
is the equilibrium melting temperature of pure solvent,me is
the equilibrium liquidus slope in phase diagram,Vm is molar
volume, R is the gas constant,k5 cS /cL , and ke5cS

e/cL
e .

The second and third terms on the right-hand side of Eq.~46!
are the constitutional undercooling with a nonequilibriu
correction and kinetics undercooling, respectively. Acco
ing to the conventional definition of the interface kineti
coefficientmk @18#, we then obtain

mk5
RT

Vm

12ke

ame , ~47!

wherea is given by Eq.~38!. Thus all the parameterse, w,
and M in the isothermal phase-field model with a finite i
terface thickness can be determined by using Eqs.~19!, ~20!,
~38!, and ~47! if interface energy, interface thickness, inte
face kinetics coefficient, and free energy densities of so
and liquid as functions of composition are given. Even wh
phase-field mobility is infinite, the interface kinetics coef
cient must be a finite value due to the second term on
right-hand side of Eq.~38!, as long as the interface thickne
is nonzero, that is,eÞ0. The finite interface thickness there
fore imposes a limit onmk . For the Al–2-mole-%-Si alloy at
870 K, for example, by using Eqs.~38! and ~47! it can be
shown that the interface thickness of 3 nm yields the ma
mum mk of 0.0195 m/s K whenM is infinite.

VI. NUMERICAL SIMULATION

In this section the steady-state concentrations of solid
liquid at the interface obtained by numerical analysis
one-dimensional isothermal solidification were compa
with those predicted by Eqs.~33! and ~34! under the low
interface velocity limit condition.

The steady state can be obtained by solving dire
steady-state equations for a given temperature, or sol
non-steady-state equations with the proper boundary co
tions under which the steady state is guaranteed at long
iq-
la-

ial
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y
g

di-
e

behavior. We relied on the latter method. The initial con
tion of our system is an undercooled state with a given s
tem temperature, and then a solid phase with the same c
position as the bulk liquid nucleates and starts to grow free
As time goes on, due to solute pile-up in the liquid phase,
interface velocity decreases monotonically and finally sto
at an equilibrium state. Thus there is no steady state in
one-dimensional~1D! free-growth system. In order to get
steady state, therefore, we should impose some condition
our system. If total solute mass is to be conserved, the c
dition should be that the far-field concentration in so
(cs

2`) is the same as that in liquid (cs
1`). In this case we can

get a unique steady-state interface velocity for a given te
perature and a bulk composition. If mass is not to be c
served, however, it is possible to impose a different con
tion to get steady state; suppose an imaginary solute sin
liquid, moving with the same instantaneous velocity as
interface, maintaining a prescribed distance from the mov
interface. If the solute sink engulfs all solute influx from i
neighbor, the steady state can exist at long time beha
even whencs

2` is different fromcs
1` because the system ha

an additional degree of freedom~the distance between solut
sink and interface!. In this case the interface velocity is no
uniquely dependent on the system temperature and
composition, but should depend on the imposed distance
tween sink and interface. With this technique we will che
the effect of interface velocity on the interfacial compo
tions of solid and liquid at a given temperature. Note that o
parameters depending only on the system temperature in
phase-field equation do not depend on the bulk composit

The Al–2-mole-%-Si alloy was selected as a model s
tem and all calculations were performed at 870 K with th
mophysical data given in Table I. The interface thicknessl
was taken as 3 nm, and the grid size of 0.5 nm was use
that the interfacial region ranges over six grid spacing. T
total grid number was fixed to be 1500. With the interfa
thickness of 3 nm and the interface energys50.093 J/m2,
the parametersw and e obtained from Eqs.~19! and ~20!
were 2.103108 J/m3 and 1.9131025 (J/m)1/2, respectively.
The phase-field mobilityM was treated as a variable to ob
serve its effect on the compositions of solid and liquid
interface. By using Eqs.~38! and ~47!, of course, one may
evaluate the corresponding interface kinetics coefficientmk
under assumption of dilute solution of mixture.

Equations~4! and ~5! were discretized by a second-ord
differencing scheme for spatial derivatives and a simple
plicit Euler scheme for time derivative, conserving the to
mass. Thef cc /D(f) at the boundary between thei th and the
( i 11)th grid was determined by

S D~f!

f cc~c,f! D
i 11/2

5
D~f i 11/2!

f cc~ci 11/2,f i 11/2!
, ~48!

where the concentrationci 11/2 and phase fieldf i 11/2 at grid
boundary were obtained by Lagrange interpolation on f
neighboring grid points. The dependence of diffusivity onf
was assumed as

D~f!5h~f!DS1@12h~f!#DL , ~49!
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whereDS andDL are the diffusivities in bulk solid and liq
uid, respectively. Initial liquid composition was uniform wit
2.0 silicon mole % and the system temperature in all sim
lations was fixed to be 870 K. Solidification started af
seeding of a small solid with the same composition with
liquid at one end of the system. In order to guarantee e
tence of steady state at long time behavior, we put a mov
solute sink in liquid, maintaining a prescribed distance fro
the interface. In every time step, the solute sink was mo
by just the interface migration distance and enforced
maintain the initial bulk composition. The system reache
steady state after a transient period. The interface velocit
the steady state could be varied by changing the prescr
distance between solute sink and interface.

Figure 2 shows steady-state concentration profiles w
M544 m3/J s and three different fixed distances, where
origin was taken as the position off50.5. The position of
the solute sink can be seen in each profile, where the c
position in liquid abruptly goes to the initial bulk compos
tion. The measured interface velocities were 0.060 m/s~solid
line!, 0.20 m/s~dashed line!, and 0.50 m/s~dotted line! for
three different prescribed distances between solute sink
interface. Note that the maximum and the minimum conc
trations approach each other with increasing interface ve
ity. The detailed corresponding phase field and concentra
profiles around the interface are shown in Fig. 3. In t
figure, interface thickness over which phase field chan
from 0.1 to 0.9 is just six grid spacing for all three cases
we expected. Note that the concentrations atf50.1, which
we regarded as the composition of liquid at the interface
the preceding section, are very close to the maximum va
in all cases.

We compared the solid and liquid compositions at
interface obtained in the numerical simulation with tho
predicted with low interface velocity limit condition. Th
solid and liquid compositions at the interface in numeri
simulation were taken as the minimum and maximum valu
respectively, in the concentration profiles given in Fig.
The solutions of Eqs.~33! and ~34!, cS and cL , were ob-

FIG. 2. Steady-state concentration profiles calculated w
M544 m3/J s for Al–2-mole-%-Si alloy at 870 K. The origin wa
taken as the position withf50.5. The interface velocities are 0.06
m/s for solid line, 0.20 m/s for dashed line, and 0.50 m/s for dot
line.
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tained by an iterative method on the compositions, using
free energy densities of solid and liquid phases given
Table I, where we used a5(2.552/M 10.3280)
3108 J s/m4 andb51.8583109 Js/m4 which were obtained
from Eqs.~37! and ~38! for the samew, e, andD(f) as in
the numerical simulation. In order to check the effects
phase-field mobility, two cases were considered;M544 and
M52.2 m3/J s were assumed and corresponding interface
netics coefficients were 0.0165 m/K s and 0.0043 m/K s,
spectively, which were calculated from Eq.~47! under the
assumption of dilute solution.

Figures 4 and 5 show interface velocity dependencies
liquid and solid compositions at the interface, respective
In these figures, solid circles (M544 m3/J s) and open
circles (M52.2 m3/J s) are the results obtained by numeric
simulation, and solid curves (M544 m3/J s) and dashed
curves (M52.2 m3/J s) are those predicted at low interfa
velocity limit condition. As discussed in the preceding se

h

d

FIG. 3. The detailed phase-field and concentration profi
around the interface, corresponding to Fig. 2.

FIG. 4. Variations of the liquid concentration at the interfa
with the interface velocity. The solid (M544 m3/J s) and dashed
curves (M52.2 m3/J s) are the predictions with low interface ve
locity limit condition, and the filled circles (M544 m3/J s) and
open circles (M52.2 m3/J s) are the results obtained from nume
cal simulations with the same parameters.
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tion, with a smallM value both solid and liquid compos
tions decrease with the increasing interface velocity. Wh
M is large, however, the solid composition increases and
solid and liquid concentrations approach each other. We
see the compositions predicted with low interface veloc
limit condition are in good agreements with those from t
numerical simulations, especially in the region of interfa
velocity less than 0.2 m/s.

FIG. 5. Variations of the solid concentration at the interfa
with the interface velocity. The solid (M544 m3/J s) and dashed
curves (M52.2 m3/J s) are the predictions with low interface v
locity limit condition, and the filled circles (M544 m3/J s) and
open circles (M52.2 m3/J s) are the results from numerical sim
lations with the same parameters.
,

ll,

D

R

ys

.

R

n
e

an
y

e

VII. CONCLUSION

For the phase-field model for solidification of an alloy, w
represented the relationship between the material prope
and the parameters in the phase-field equation with the
interface velocity limit condition and with a finite interfac
thickness, not in the sharp interface limit. Finite interfa
thickness induced a chemical potential gradient within
diffuse interface and caused the compositions of solid
liquid at the interface to approach each other with increas
interface velocity, which is the solute trapping phenomen
One-dimensional isothermal solidification of the Al–2-mol
%-Si alloy at 870 K was simulated by a numerical metho
The interfacial compositions of solid and liquid predicted
a low interface velocity limit condition were in good agre
ment with those from the numerical simulations, especia
in the region of interface velocity less than 0.2 m/s.

There exist upper bounds on the interface thickness
the interface kinetics coefficient which vary with therm
physical properties of alloys. The upper bound for the int
face kinetics coefficient disappears only at sharp interf
limit condition or infinite interfacial diffusivity condition.
The calculated upper bound of interface thickness for
Al–2-mole-%-alloy at 870 K was 6.51 nm. The upper bou
on the interface kinetics coefficient, calculated with an int
face thickness of 3 nm, was 0.0195 m/s K. These up
bounds may impose strong restrictions on the numer
simulation of pattern formation during solidification with
reasonable interface kinetics coefficient (;1 m/s K) and a
large system size. After submission of this paper, we lear
that similar results were obtained independently by Ahm
@30#.
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